Abstract

Many studies have demonstrated that mitotic cells can round up against external impediments. However, how the stiffness of external confinement affects the dynamics of rounding force/pressure and cell volume remains largely unknown. Here, we develop a theoretical framework to study the rounding of adherent cells confined between a substrate and a cantilever. We show that the rounding force and pressure increase exclusively with the effective confinement on the cell, which is related to the cantilever stiffness and the separation between cantilever and substrate. Remarkably, an increase of cantilever stiffness from 0.001 to 1 N/m can lead to a 100-fold change in rounding force. This model also predicts an active role of confinement stiffness in regulating the dynamics of cell volume and hydrostatic pressure. We find that the dynamic changes of cellular volume and hydrostatic pressure after osmotic shocks are opposite if the cantilever is soft, whereas the dynamic changes of cellular volume and pressure are the same if the cantilever is stiff. Taken together, this work demonstrates that confinement stiffness appears as a critical regulator in regulating the dynamics of rounding force and pressure. Our findings also indicate that the difference in cantilever stiffness need to be considered when comparing the measured rounding force and pressure from various experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.