Abstract

Surface treatment of aramid fibers by immersion in a solution of methacryloyl chloride in carbon tetrachloride was carried out, and the resulting material was examined by means of electron microscopy and chemical analysis in an attempt to record any changes in the morphology and nature of the surface. Mechanical testing of tensile, flexural, and interlaminar shear strength, as well as dynamic mechanical analysis (DMA), were performed in an attempt to explore the effect of this treatment on the strength of the fiber. In a subsequent stage, the performance of those fibers as reinforcement in composites of epoxy matrix was assessed. The aim of this study was to provide more information about the interactions between the chloride-treated aramid fibers and the epoxy resin and, more specifically, to compare the behavior of the epoxy matrix composites with those composed of unsaturated polyester, polyethylene, and polyurethane matrix, which were studied in the past. It was found that specimens containing chloride-treated aramids display better flexural properties, whereas their tensile strength is drastically reduced. Improved performance was also identified by the DMA experiments. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65:–, 1997

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.