Abstract

We investigated the mechanical properties of metal–organic framework thin-film coatings grown by an electrochemical method, which allows fast deposition in environmentally friendly solvents. For the first time, Cu(CHDA) and Cu(INA)2 are electrochemically synthesised as dense coatings on Cu-electrodes, alongside the well-known Cu3(BTC)2 (CHDA = trans-cyclohexane-1,4-dicarboxylate; INA = isonicotinate; BTC = benzene-1,3,5-tricarboxylate). In order to probe the mechanical behaviour of the MOF coatings, both nanoindentation and nanoscratch experiments are performed. The indentation of a polycrystalline film allows the determination of average Young's moduli and hardness of the coatings. Cu(CHDA) exhibits the highest stiffness and hardness, with values of 10.9 GPa and 0.46 GPa, respectively. Intermediate values are obtained for the well-known Cu3(BTC)2 and the smallest values for Cu(INA)2. A close inspection of the crystal lattice of the MOF materials under investigation allows for correlating the mechanical properties and structural building units of these materials. Finally, the effect of the fundamental mechanical properties of MOF films on their scratch and wear resistance is illustrated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.