Abstract

The aim of the present study was to evaluate mechanical properties, including surface hardness, flexural strength, and flexural modulus, of two dual-cured resin luting agents [Clearfil Esthetic Cement (CEC) and Variolink II (VLII)] irradiated through four thicknesses of leucite ceramics (0, 1, 2, and 3 mm) and to evaluate their shear bond strength to zirconia ceramic (Cercon) using each ceramic primer. Knoop hardness was measured on a thin layer of resin luting agent on the ceramic surface. Three-point bending tests were performed after 24 hours of storage at 37 degrees C. Two differently shaped zirconia ceramic specimens with or without sandblasting with alumina were treated with each primer. The specimens were then cemented together with each resin luting agent. Half of the specimens were stored in water at 37 degrees C for 24 hours and the other half were thermocycled 5000 times. VLII revealed statistically higher Knoop hardness and flexural modulus than CEC for each thickness of ceramic. No significant differences in flexural strength were observed between VLII and CEC for each ceramic spacer. Reduction of the mechanical properties with increase of ceramic thickness varied for each property; however, these properties were similar in the two materials. Blasting with alumina was significantly effective for increasing shear bond strength of both resin luting agents before and after thermal cycling. The use of Clearfil Ceramic Primer showed the highest shear bond strength and maintained bond durability after 5000 thermocycles. Mechanical properties of CEC dual-cured resin luting agent appear adequate for ceramic restorations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.