Abstract

Mechanical properties of six depleted uranium-molybdenum (U-Mo) alloys have been obtained using microhardness, quasistatic tensile tests, and scanning electron microscopy (SEM) failure analysis. U-Mo alloy foils are currently under investigation for potential conversion of high power research reactors to low enriched uranium fuel. Although mechanical properties take on a secondary effect during irradiation, an understanding of the alloy behavior during fabrication and the effects of irradiation on the integrity of the fuel is essential. In general, the microhardness, yield strength, Young’s modulus, and ultimate tensile strength improved with increasing Mo content. Microhardness measurements were very sensitive to local composition, while the failure mode was significantly controlled by the impurity concentration of the alloy, especially carbon. Values obtained from literature are also provided with reasonable agreement, even though processing conditions and applications were quite different in some instances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.