Abstract

Disconnectable coupling (DC) joints of steel bracing in foundation pit engineering are inevitably subjected to eccentric load, but their mechanical properties under eccentric load have not been thoroughly investigated. Based on full-scale test results of DC joints under axial compression, a validated finite element model was established. The bearing capacity and flexural performance of DC joints under eccentric load were studied systematically through a series of numerical simulations. These parameters included the length, width and height of the steel wedge; eccentricity; steel tube wall thickness; channel steel thickness and middle-rib plate height. Based on the numerical results, a modified moment–rotation model was established. The results obtained show that the numerical models accurately reflect the failure mode and the load-displacement curves revealed by the full-scale test. The bearing capacity and flexural performance of DC joints decreases with eccentricity, middle-rib plate height, and steel wedge height. The effect of eccentricity is the most significant. By contrast, the bearing capacity and flexural performance of DC joints increases with steel wedge length, steel wedge width, channel steel thickness and steel tube wall thickness. The modified moment–rotation model can describe the flexural performance of DC joints accurately under eccentric load.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call