Abstract
Ni3Al shows the unique feature of increasing strength with increasing temperature. However, it is too brittle to use as a structural material due to grain boundary weakness. Ductility could be enhanced by controlling grains using directional solidification. In order to increase the ductility or strength of Ni3Al alloys, a ductile γ (Ni-rich) phase of dendrite fibers or a strong β (NiAl) phase of dendrite fibers were arrayed in the γ´ (Ni3Al) matrix by directional solidification. The dendrite spacing could be controlled by varying the solidification rates, and the volume fraction of the γ or β phase could be changed by using alloy compositions, from 23 to 27 at. % Al-Ni alloy. With increasing solidification rates, the dendrite spacing decreased, which caused the tensile strength to be enhanced and the elongation to decrease, evidently due to the phase boundary augmentation. With increasing Al content, the γ dendritic microstructure changed to β dendrites in the γ´ matrix, which resulted in a decrease in elongation as a result of an increase in the volume fraction of the brittle β dendrites in the γ´ matrix.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.