Abstract

Ground corn and soybean meal are common ingredients in feed mixes. The knowledge of their mechanical properties is important to the feed manufacturer and consumer. Changes in these properties can lead to abnormally high or low levels of active ingredients in finished feed, thus decreasing its quality. Mechanical properties of wheat, corn meal, and soybean meal were investigated using a modified direct shear apparatus. The moisture content (wet basis), uncompacted bulk density, and particle density were: 10.4%, 733 kg/m 3 , and 1410 kg/m 3 for soft red winter wheat; 11.4%, 583 kg/m 3 , and 1350 kg/m 3 for soybean meal; and 11.7%, 595 kg/m 3 , and 1410 kg/m 3 for corn meal, respectively. A relatively long sliding path of 60 mm was utilized in shear testing to account for the high compressibility of the materials and minimize boundary effects. The compressibility of the materials was determined at a maximum vertical pressure of 34.4 kPa, which caused a density increase of 21% for corn meal while the density of wheat and soybean meal increased by approximately 5%. Frictional properties were tested for seven levels of vertical consolidation pressures ranging from 4.1 to 20.7 kPa. The high compressibility of corn meal resulted in severe stick-slip behavior of the frictional force-displacement relationships. The angles of internal friction of wheat, soybean meal, and corn meal were found to be 26.3° ±0.3°, 33.9° ±0.9°, and 30.7° ±1.4°, respectively. Cohesion of soybean meal and corn meal was approximately 0.7 kPa without a clear relation to consolidation stress and approximately 0.3 kPa for wheat. With cohesion values lower than 4 kPa, all three materials should be treated as free-flowing in terms of Eurocode 1. Corn and soybean meals are known to cause flow problems in practice that were not confirmed during testing. In practical storage conditions, materials undergo a longer consolidation period. Our tests have shown that with processes that have a short duration and low consolidation pressures, these materials should be treated as free-flowing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.