Abstract

The mechanical properties of compositionally modulated Au-Ni films were investigated by submicrometer depth-sensing indentation and by deflection of micrometer-scale cantilever beams. Films prepared by sputter deposition with composition wavelengths between 0.9 and 4.0 nm were investigated. Strength was found to be high and invariant with composition wavelength. Experimental and data analysis methods were developed to provide more accurate and precise measurements of elastic stiffness. Large enhancements in stiffness (the “supermodulus effect”) were not observed. Rather, relatively small but significant minima were observed at a composition wavelength of about 1.6 nm by both techniques. These variations were found to be strongly correlated with variations in the average lattice parameter normal to the plane of the film. Both structural and mechanical property variations are consistent with a simple model in which the film consists of bulk-like Au and Ni layers with interfaces of constant thickness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.