Abstract

Characteristic densification in cold sintered microstructures could also have a strong influence in defining their mechanical response. For the first time, nanoindentation and micro-pillar testing is used to study these details. Based on our recent work, we selected cold sintered (250 °C, ∼ 99 % dense) and conventionally sintered (900 °C, ∼ 98 % dense) ZnO samples. Hardness, elastic modulus and compressive stress of cold sintered samples were measured to be 5.5 GPa ± 0.5, 100 GPa ± 5 and ∼ 1.2 GPa, respectively. Same values for conventionally sintered ZnO were 4.8 GPa ± 0.6, 109 GPa ± 6 and 0.8 GPa, respectively. The distinctive nature of grain boundary regions in cold sintered samples were found to influence the deformation behavior of these samples, as confirmed by TEM investigations. Our study reveals the potential of cold sintering and use of selected testing techniques as suitable choice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.