Abstract

The research herein is made on the quasi-static and dynamic mechanical properties of ceramic fiber reinforced concrete (CRFRC for short) through the adoption of a hydraulically-driven testing system as well as a 100-mm-diameter split Hopkinson pressure bar (SHPB) system. As test results have turned out, such quasi-static properties as compressive strength, splitting tensile strength and flexural strength of CRFRC increase with the rise in the volume fraction of fiber. Within the strain range of 20–120s−1, the effect of the axial strain acceleration on the dynamic strength of CRFRC could be ignored. Therefore, the dynamic increase ratio (DIF) derived from SHPB tests can truly reflect the dynamic enhancement of CRFRC. The dynamic strength, critical strain and specific energy absorption (SEA) of CRFRC are sensitive to the strain rate. The addition of ceramic fiber to plain concrete can significantly improve its properties—dynamic strength, critical strain and energy absorption. And also, an analysis is conducted of the mechanism for strengthening and toughening the concrete.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.