Abstract

The effects of seawater exposure on the mechanical properties of unidirectional T700 carbon fiber/vinylester (510A) composites have been examined. Carbon fibers with two different types of sizings (F and G) were studied. Dynamic mechanical analysis testing of the neat resin and a carbon/vinylester composite revealed similar viscoelastic responses and glass transition temperatures indicating same type of cured resin for both cases. An analysis of moisture absorption dynamics of the composites revealed Fickian behavior. The composites absorbed more moisture than the resin. The moisture up-take in the composites is dominated by the fiber/matrix region. A comprehensive mechanical test program involving tension, compression, and shear tests was conducted on the composites at dry and saturated conditions. Composites with F-sized carbon fibers displayed overall higher strengths than those with G-sized fibers at both dry and moisture-saturated conditions. Moisture absorption was found to have a moderate influence on most composite strengths, except for the in-plane and interlaminar shear strengths, where reductions in the range of 10–16% occurred. POLYM. COMPOS., 35:1559–1569, 2014. © 2013 Society of Plastics Engineers

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.