Abstract

Aim of the study was to evaluate mechanical properties of light-curing composite materials modified with the addition of calcium fluoride. The study used one experimental light-curing composite material (ECM) and one commercially available flowable light-curing composite material (FA) that were modified with 0.5–5.0 wt% anhydrous calcium fluoride. Morphology of the samples and uniformity of CaF2 distribution were analyzed using Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). Mechanical properties were tested after 24-hour storage of specimens in dry or wet conditions. Stored dry ECM enriched with 0.5–1.0 wt% CaF2 showed higher tensile strength values, while water storage of all modified ECM specimens decreased their tensile strength. The highest Vickers hardness tested after dry storage was observed for 2.5 wt% CaF2 content in ECM. The addition of 2.0–5.0 wt% CaF2 to FA caused significant decrease in tensile strength after dry storage and overall tensile strength decrease of modified FA specimens after water storage. The content of 2.0 wt% CaF2 in FA resulted in the highest Vickers hardness tested after wet storage. Commercially available composite material (FA), unmodified with fluoride addition, demonstrated overall significantly higher mechanical properties.

Highlights

  • Constant development in dental material science, there has been no reconstructive material found that would perfectly restore hard dental tissues

  • Among experimental light-curing composite material (ECM) specimens stored in dry conditions, diametral tensile strength test (DTS) values in group ECM 0.5 and ECM 1.0 were statistically higher than in the other tested groups, while for subgroup stored in water, the highest DTS values of all tested groups were observed in control group

  • For flowable lightcuring composite material (FA) specimens stored in dry conditions, only group FA 1.0 showed significantly higher DTS values than the control

Read more

Summary

Introduction

Constant development in dental material science, there has been no reconstructive material found that would perfectly restore hard dental tissues. One of the main objective in dental materials science is the introduction into material’s composition compounds with antibacterial activity such as chlorhexidine digluconate (CHG), chlorhexidine acetate (CHA), quaternary ammonium dimethacrylate (QADM), or amorphous calcium phosphate (ACP). Another trend is modification of restorative materials with fluoride compounds such as NaF, CaF2, SnF2, SrF2, KF, which would release fluoride ions and contribute to remineralization of dental tissue within the cavity and in the environment surrounding the restoration [1]. In order to enhance fluoride ions activity, combination with calcium compounds has been introduced [7]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call