Abstract

A series of experiments was performed to evaluate some mechanical properties of boronized AISI W4 steel. Boronizing was carried out in a solid medium consisting of EKabor powders at 850, 950 and 1050°C for 2, 4, 6 and 8 h. After boronizing, FeB and Fe 2B phases were formed on the surface of the steel substrate. A boride layer was revealed by a classical metallographic techniques and X-ray diffraction (XRD) analysis. Depending on the process temperature and boronizing time, the thickness of the coating layers ranged from 8 to 386 μm. Metallographic studies revealed that the boride layer has a lenticular morphology. The hardness of the boride layer was measured using a Vickers indenter with loads of 0.5 and 1 N. It was found that the hardness of the boride layers ranged from 1407 to 2093 HV. The fracture toughness of borided surfaces was measured via a Vickers indenter with a load of 10 N. It was observed that the fracture toughness of the boride layer ranged from 1.39 to 6.40 MPa m 1/2. A longer boronizing time results in a greater boride layer thickness. Lengthwise cracks were formed on the samples that were borided at 1050°C for 6 and 8 h. The distribution of alloying elements from the surface to the interior was determined using energy-dispersive X-ray spectroscopy (EDS). The main aim of present study was to increase the service life of AISI W4 plain carbon tool steel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call