Abstract

Alumina+zirconia (PRD-166) and Saphikon fibers reinforced glass matrix composites with and without a SnO2 interphase were prepared by slurry infiltration and their mechanical characteristics were evaluated. Longitudinal bend strength increased with volume fraction of fibers in both PRD-166/glass and PRD-166/SnO2/glass matrix composites. PRD-166/glass matrix composites failed in a brittle manner whereas PRD-166/SnO2/glass matrix composites exhibited non-planar failure with crack deflection and fiber bridging as major toughening mechanisms. Saphikon/SnO2/glass matrix composites failed in a tough manner with extensive fiber pullout. The difference in the failure mode between PRD-166/SnO2/glass and Saphikon/SnO2/glass matrix composites was due to fiber roughness. The toughness of PRD-166/SnO2/glass matrix composites was due to crack deflection, fiber bridging, partial fiber debonding and some fiber pullout. Major toughening mechanisms in Saphikon/SnO2/glass matrix composites were fiber debonding and fiber pullout with minor contributions due to crack deflection and fiber bridging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.