Abstract

The Al/a-C nanocomposite thin films are synthesized on Si substrates using a dense plasma focus device with aluminum fitted anode and operating with CH4/Ar admixture. X-ray diffractometer results confirm the formation of metallic crystalline Al phases using different numbers of focus shots. Raman analyses show the formation of D and G peaks for all thin film samples, confirming the presence of a-C in the nanocomposite thin films. The formation of Al/a-C nanocomposite thin films is further confirmed using X-ray photoelectron spectroscopy analysis. The scanning electron microscope results show that the deposited thin films consist of nanoparticles and their agglomerates. The sizes of th agglomerates increase with increasing numbers of focus deposition shots. The nanoindentation results show the variations in hardness and elastic modulus values of nanocomposite thin film with increasing the number of focus shots. Maximum values of hardness and elastic modulus of the composite thin film prepared using 20 focus shots are found to be about 10.7 GPa and 189.2 GPa, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call