Abstract

We investigate a model system for the rotational dynamics of inertial many-particle clustering, in which submillimeter objects are acoustically levitated in air. Driven by scattered sound, levitated grains self-assemble into a monolayer of particles, forming mesoscopic granular rafts with both an acoustic binding energy and a bending rigidity. Detuning the acoustic trap can give rise to stochastic forces and torques that impart angular momentum to levitated objects. As the angular momentum of a quasi-two-dimensional granular raft is increased, the raft deforms from a disk to an ellipse, eventually pinching off into multiple separate rafts, in a mechanism that resembles the breakup of a liquid drop. We extract the raft effective surface tension and elastic modulus and show that nonpairwise acoustic forces give rise to effective elastic moduli that scale with the raft size. We also show that the raft size controls the microstructural basis of plastic deformation, resulting in a transition from fracture to ductile failure.3 MoreReceived 17 June 2021Revised 14 February 2022Accepted 4 March 2022DOI:https://doi.org/10.1103/PhysRevX.12.021017Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.Published by the American Physical SocietyPhysics Subject Headings (PhySH)Research AreasAcoustic interactionsClusteringGranular materialsPolymers & Soft Matter

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call