Abstract

Surface mechano-chemical carburizing treatment (SMCT) is a modified version of surface mechanical attrition treatment and it is one of the cutting-edge technologies for producing hard nano-crystalline surface in metallic materials. In the present study, a case carburized surface layer is achieved in 1.75 Ni–Cr–Mo steel at room temperature using SMCT. Activated charcoal powder is continuously fed during the process so as to achieve the carbon diffusion into the surface layer. The SMCT process has been carried out for different periods say 15, 30, 45 and 60 min respectively. The microstructure and surface chemical composition is investigated by using TEM and XRF analysis. The mechanical properties such as yield strength (YS), ultimate tensile strength (UTS), fracture toughness and surface hardness of SMCT samples have been investigated using universal testing machine, Plain strain fracture toughness test and Microvickers hardness test respectively. The surface carbon content has been found to increase linearly and grain size reduces continuously with processing time. A 60 min SMCT samples reveal 0.8% C and about 10 nm grains over the surface. The SMCT samples show significant improvement in mechanical properties. The surface hardness increases from 180 HV0.1 to ~ 878 HV0.1 by 60 min of treatment. About 55% increment in the YS and 30% increment in UTS is achieved by 60 min of SMCT. It is also interesting to note that the fracture toughness of the samples enhances from 24 to 47 MPa $$ \sqrt m $$ after 60 min of SMCT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.