Abstract
The processing–property relationship of a model cryogenically mechanically alloyed polymer–polymer system [polycarbonate (PC) and poly(aryl ether ether ketone) (PEEK)] was investigated. PC and PEEK powders were cryogenically mechanically alloyed for 10 h, and the resulting two-phase powder particles were processed into testable coupons with a miniature ram-injection molder. The bulk mechanical properties of the coupons made from the mechanically alloyed powders and nonmechanically alloyed powders were investigated as a function of mechanical alloying and injection-molding parameters. The injection-molded coupons were mechanically tested in the three-point-bending mode. The results demonstrated that no measurable improvement was achieved in the energy to break, strain at failure, or failure strength in the coupons made from the mechanically alloyed materials in comparison with those of the coupons made from the nonmechanically alloyed powders. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1196–1202, 2003
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.