Abstract

Chiral honeycomb structures have been developed in recent years, showing excellent mechanical properties, including in-plane deformation and out-of-plane bearing and vibration isolation. In this study, the 65Mn chiral structure with three ligaments was modeled and analyzed using the finite element (FE) method. The effects of the dimensionless ligament length and dimensionless ligament thickness on the in-plane equivalent elastic modulus, equivalent Poisson’s ratio, and out-of-plane shear modulus were studied. The numerical results indicate that increase of the dimensionless ligament length leads to decrease of the equivalent elastic modulus and increase of the equivalent Poisson’s ratio, whereas the out-of-plane equivalent shear modulus decreases. The results also indicate that increase of the dimensionless ligament thickness leads to increase of the equivalent elastic modulus, whereas the equivalent Poisson’s ratio remains nearly unchanged and the out-of-plane equivalent shear modulus shows a linear increase. The numerical results are verified by comparison with published experimental data. These results will provide a reference for the application of chiral structures with three ligaments in the aerospace field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call