Abstract

Metal-matrix composites (MMCs) are known to have wide applications in parts of transportation devices such as automobiles and aircraft. Al-matrix composites using SiC particles as reinforcements are especially spotlighted because of their low cost, superior specific modulus, specific strength, wear resistance, and high-temperature stability. However, Al4C3 formed by the interfacial reaction between Al and SiC weakens the interfacial bonding strength. It is also known to be unstable in the water-soluble atmosphere. In this study, the passive oxidation of SiC powder is used as a protective layer against the reaction between the Al matrix and the SiC particles. We investigated the changes in interfacial product of the composites, and mechanical properties such as interfacial bonding strength and tensile strength, in terms of the oxidized-layer thickness of the reinforcement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.