Abstract

Abstract Lightweight carbon materials with excellent thermal and mechanical properties have important applications in aerospace industry. In this study, the stability, mechanical properties, lattice thermal conductivity, electronic structure, infrared and Raman spectrum of sp3 hybridized low-density fullerite C24 were investigated according to density functional theory (DFT) calculations. It was found that the fullerite C24 was both thermodynamic and dynamic stable. Quasi-harmonic approximation and Gruneisen parameter calculations clarified why the fullerite C24 had a positive thermal expansion coefficient at low temperature. The fullerite C24 also exhibited excellent mechanical properties. Interestingly, the Vickers hardness of carbon allotropes was found to almost be linear proportional to the density of a carbon material. HSE06 electronic structure calculations showed that it was a semiconductor with direct bandgap of 2.56 eV. Anharmonic lattice dynamic calculations showed that its thermal conductivity was higher than semiconductor silicon. Besides, Raman and infrared active modes as well as the corresponding spectra were presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.