Abstract

This paper presents the study of mechanical properties of short pineapple leaf fibre reinforced polypropylene composites. Pineapple leaf fibre (PALF) is one of them that have also good potential as reinforcement in thermoplastic composite. It is the objective of the current research to characterize the mechanical properties of treated and untreated composites of PALF reinforced polypropylene (PP) composite with four different volume fractions of pineapple leaf fiber (PALF) was fabricated, (5 vol%, 10 vol%, 15 vol% and 20 vol%). The study of this PALF-PP composite demonstrates that bulk density of the composite decrease as the volume fraction increased. From the study about impact strength toward the fibre loadings, impact strength and energy absorbed increase as the volume fraction of fibre increased. Untreated PALF gives greater impact strength than treated PALF. From the experiment conducted on impact test and scanning electron microscopy experiment, untreated fibre produce greater impact and absorbed energy than treated fibre. Until 20% of PALF, result showed strength of the composite still rising to prove that 20% of fibre will fabricate finest fibre loading for the PALF-PP composite was observed from the scanning electron microscope (SEM) micrograph as an evidences on compatibility mechanical properties at the intersectional region of composite.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call