Abstract

Super Duplex Stainless Steel has been studied for oil and gas industry applications since the 90 s, but their welding always is a technical issue. Then different methods were developed to meet all requirements presents in ASME standards, where most of are applied for lower production, when compared to other materials such carbon steel. This study accomplished circumferential welding experiments in base material (BM)—UNS S32750 Super Duplex Stainless Steel with a thickness of 3.68 mm. Welding was performed using GMAW (Gas Metal Arc Welding) process with CMT (Cold Metal Transfer) control and the aid of a Motoman robot and a turntable device, which were used to ensure the accurate positioning of the torch and that the welding has been fully implemented in the 1 G position, respectively. This process achieves higher production in relation other welding process usually applied for this material class. The joints which presented adequate dimensional results were, then, subjected to tensile and hardness Vickers tests. To avoid the lack of penetration problem, the welding was performed using the CMT process combined with pulsed arc, thus, resulting in full penetration and improved surface finish. The results have shown that the CMT procedure, combined with pulsed arc, led to an adequate superficial finishing, mechanical properties and corrosion resistance in accomplishment with the requirements presented in applicable standards.

Highlights

  • Stainless steel is a type of metallic material that has mechanical properties and high corrosion resistance, suitable for use in many different segments

  • The results have shown that the CMT procedure, combined with pulsed arc, led to an adequate superficial finishing, mechanical properties and corrosion resistance in accomplishment with the requirements presented in applicable standards

  • The objective of this study is to investigate the behavior of tubular joints of the UNS S32750 super duplex stainless steel welded by the GMAW (Gas Metal Arc Welding) process and using the CMT® (Cold Metal Transfer) control, through: tensile, Vickers hardness, microstructural characterization and corrosion resistance tests

Read more

Summary

Introduction

Stainless steel is a type of metallic material that has mechanical properties and high corrosion resistance, suitable for use in many different segments. The increase in tensile strength and hardness, as well as the increased corrosion resistance of this material, could increase the use of UNS S 32750 steel in aggressive environments containing chlorides, such as sea water in tropical (hot) locations, which is the case of pre-salt oil exploration. This material affords to be used in tertiary systems of nuclear reactors, since this system could use saline water on its cooling system, which may be heated to temperatures above 70 ̊C (158 ̊F) [6] [7] [8]] [9] [10]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call