Abstract

Extracellular matrix mimetic hydrogels which hybridize synthetic and natural polymers offer molecularly-tailored, bioactive properties and tunable mechanical strength. In addition, 3D bioprinting by stereolithography allows fabrication of internal pores and defined macroscopic shapes. In this study, we formulated a hybrid biocompatible resin using natural and synthetic polymers (chitosan and polyethylene glycol diacrylate (PEGDA), respectively) by controlling molecular weight of chitosan, feed-ratios, and photo-initiator concentration. Ear-shaped, hybrid scaffolds were fabricated by a stereolithographic method using a 405nm laser. Hybrid hydrogel scaffolds of chitosan (50-190kDa) and PEGDA (575Da) were mixed at varying feed-ratios. Some of the cationic, amino groups of chitosan were neutralized by dialysis in acidic solution containing chitosan in excess of sodium acetate solution to inhibit quenching of newly formed photoradicals. A feed-ratio of 1:7.5 was found to be the most appropriate of the formulations considered in this study in terms of mechanical properties, cell adhesion, and printability. The biofabricated hybrid scaffold showed interconnected, homogeneous pores with a nominal pore size of 50µm and an elastic modulus of~400kPa. Moreover, long-term cell viability and cell spreading was observed via actin filament staining. Printability of the biocompatible resin was confirmed by printing thresholded MR images of an ear and the feed ratio of 1:7.5 provided the most faithful reproduction of the shape. To the best of our knowledge, this is the first report of stereolithographic printing hybridizing cell-adhesive properties of chitosan with mechanical robustness of PEG in scaffolds suitable for repair of complex tissue geometries, such as those of the human ear.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call