Abstract

Numerical simulations are now an actual option in order to try to reproduce and understand the mechanical response in components subjected to extreme loading conditions, like in a ballistic impact. A correct materials calibration is therefore necessary in order to extract the materials parameters. In this work the simple and widely used Johnson-Cook model was used to analyse the experimental data obtained for the characterization of the bullet materials. The bullet under investigation is a full metal jacket ball, with a lead-antimony alloy core and a brass jacket. The experimental tests cover a wide range in strain-rate, starting from quasi-static tests up to high dynamic tests performed on a standard Split Hopkinson Pressure Bar setup. In general, there is a great lack in strain-rate sensitivity and failure data. Pure lead is very soft and ductile, so antimony is used to give greater hardness and strength. The results of this study show a significant strain-rate influence for this alloy that can be associated with the presence of the lead-antimony phases and their structures. Also in case of the brass the results showed significant strain-rate sensitivity in the material response.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call