Abstract

ZrO2-YO1.5-TaO2.5 (ZYTO) composite ceramics are considered to be a candidate for next-generation thermal barrier coatings (TBCs) due to their excellent thermal stability and low thermal conductivity in high temperatures; however, the mechanical properties and fracture toughness of the ZYTO system may be shortcomings compared with 7-8YSZ: the traditional TBC. In this study, ZYTO composite ceramics were successfully prepared by chemical coprecipitation reaction, and the microstructure of resulting composites was studied as a function of the doping of M-YTaO4. Mechanical properties, including the density, porosity, hardness and Young’s modulus, were all determinate; the toughening mechanism was verified by the crack growth behavior of the Vickers indentation test. The results suggest that M-YTaO4 refined the fluorite phase grain and strengthened the grain interface in the composite ceramic. The thermal mismatch between the second phase and matrix produced residual stress in the bulk and affected the crack propagation behavior. With the increase in M-YTaO4 doping, the grain coarsening and ferroelastic domains were observed in the experiments. The ferroelastic domains with orthogonal polarization directions near the crack tip evidenced the ferroelastic toughening mechanism. The competition among these crack behaviors, such as crack deflection, bridging and bifurcation, dominated the actual fracture toughness of the composite. The best toughening formula was determined in the two-phase region, and the highest indentation fracture toughness was about 42 J/m2, which was very close to 7-8YSZ’s 45 ± 5 J/m2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call