Abstract

Composite material consisting of Al2O3 and TiC in a matrix of highly textured Ti3AlC2 was fabricated in a two-step fabrication process. The Lotgering orientation factor for {00 l} planes of Ti3AlC2 in the textured top surface plane reached 0.71. Texture analysis showed an orientation relationship among Ti3AlC2, Al2O3 and TiC grains of [110] Ti3AlC2 // [110] TiC, (001) Ti3AlC2 // (111) TiC, and [110] Ti3AlC2 // [120] Al2O3, (001) Ti3AlC2 // (001) Al2O3. The texture grained material exhibited excellent mechanical properties, with compressive and flexural strengths of more than 2.5 times those of conventional coarse grained Ti3AlC2, and fracture toughness and hardness were 50% higher than those of conventional coarse grained Ti3AlC2. The microstructures of textured Ti3AlC2 and reported textured Ti2AlC were investigated and compared to interpret the differences in mechanical behavior of the two textured MAX phases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.