Abstract

ABSTRACTThe use of granulated recycled rubber as a lightweight material in civil engineering applications has been widely growing over the past 20 years. Processed waste tires mixed with soils have been introduced as lightweight fills for slopes, retaining walls, and embankments. It has also been considered as a damping material under foundations in seismic zones. Understanding the properties of sand-rubber mixtures is essential to evaluate its performance in geotechnical applications. Isotopically consolidated drained (CD) triaxial tests were conducted to investigate the effect of rubber size, content and saturation condition on the mechanical properties of sand-rubber mixtures. Moreover, the compressibility of the sand-rubber mixtures under sustained loading was investigated through one dimensional consolidation tests. The unit weight, shear strength and stiffness of sand-rubber mixtures decreased whereas deformability increased at increased rubber content. A non-linear stress-strain response was observed, that changed from brittle to ductile behaviour at increased rubber content. Sand-rubber mixtures, under one dimensional loading, exhibited significant settlement that increased as rubber content increased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.