Abstract

Recent developments in material science have presented newer archwire materials as well as improvements in the properties of existing ones. Proper selection and understanding of the biomechanical requirement of each case requires proper characterization studies on archwire alloys. The present study characterizes and compares three orthodontic archwire alloys, stainless steel, beta titanium alloy (TMA), and a newly introduced titanium alloy (TiMolium), for the parameters (1) ultimate tensile strength (UTS), 0.02% offset yield strength (YS), and modulus of elasticity (E); (2) load deflection characteristics; (3) frictional properties; (4) surface characteristics and (5) elemental analysis for TiMolium. Seven specimens of each archwire alloy were used for evaluating each parameter. An instron universal testing machine was used for tensile testing, three-point bend testing, and evaluation of frictional characteristics. Scanning electron microscope was used for surface evaluation and X-ray fluorescence for elemental analysis of TiMolium wire specimens. Stainless steel was the strongest archwire alloy with high UTS, E, 0.02% offset YS, and less friction at the archwire-bracket interface. TMA wires exhibited better load deflection characteristics with less stiffness than the other two wires. The surface of TMA appeared rough and exhibited very high values for friction at the archwire-bracket interface. TiMolium appeared to be an alpha-beta titanium alloy composed of titanium, aluminum, and vanadium and intermediate in nature for all the parameters evaluated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.