Abstract

By adding randomly distributed short fiber into a shape memory polymer (SMP) matrix, both the mechanical properties and the shape memory behavior are improved significantly, overcoming some traditional defects of SMP composite reinforced by long fiber and particles. In this paper, the short fiber reinforced SMP composite are developed for the improvement of the mechanical and thermal properties of styrene-based SMP bulk. The specimens with different chopped fiber weight fractions are prepared, and then their mechanical behavior and electrical properties are investigated. As a result, the resistance against mechanical and thermal mechanical loads in the developed materials increases due to the role of reinforcement fiber. For the conducting composite filled with short carbon fiber, not only the actuation of SMP composite can be driven by low voltage, but also its tensile, bending strength, glass transition temperature, storage modulus and thermal conductivity increase by a factor of filler content of carbon fiber increasing. The results show meaningful guidance for further design and the performance evaluation of such composite materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call