Abstract

A series of Ti-Al-Zr alloy targets with the atomic ratio of (Al + Zr)/(Ti + Al + Zr) from 0.29 to 0.40 were used directly to prepare (Ti,Al,Zr)N multi component hard reactive films on high speed steel substrates by multi arc ion plating (MAIP) technology. The surface morphology, the cross-fracture microstructure, the surface compositions and the phase structure of the (Ti,Al,Zr)N films were investigated by scanning electronic microscope (SEM) and X-ray diffraction (XRD). The dense columnar microstructure was obtained in all of the (Ti,Al,Zr)N films, though micro-droplets evidently existed on the surface of the films. The XRD analysis revealed f.c.c. structure only existing in all of the (Ti,Al,Zr)N films. The lattice parameter was changed with varying the Al and Zr contents in alloy targets. The micro-hardness of film surface and the adhesive property of film/substrate were measured. All the (Ti,Al,Zr)N films displayed excellent mechanical properties. The adhesive strength, in terms of critical load, was larger than 100N and the hardness was bigger than 3000Kg(f)/mm 2. The (Ti,Al,Zr)N film displayed the highest micro-hardness as the atomic ratio of (Al + Zr)/(Ti + Al + Zr) in Ti-Al-Zr alloy target reached 0.40. The present results suggest the expectant substitution of (Ti,Al,Zr)N films for TiN, (Ti,Al)N and (Ti,Zr)N hard films in industrial application and the technical advantage of Ti-Al-Zr alloy targets in preparing (Ti,Al,Zr)N hard films by multi arc ion plating.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call