Abstract

AbstractThe synthetic membranes currently used for soil stabilization and road construction are mainly made of polypropylene and of polyesters. They are used separately for each application. The polymer used has an effect on the wettability and, the permeability of the membrane. The polypropylene membranes, for instance, have a zero wettability, whereas it is high for polyester membranes. This paper reports on the mechanical properties and the permeability of mixtures of polypropylene (PP) and poly(ethylene terephthalate) (PET). The elastic modulus of the mixture was at a minimum for a 50/50 mixture. For the other compositions, the moduli gave a positive deviation as compared with the additivity equation results. This is probably due to the fact that pure PET has a fragile behavior at the temperature at which the mechanical tests were run. This 50/50 composition corresponds to the domain where a phase inversion occurs. The permeability to water vapor gave an S‐shape curve that is typical of a “mixture” of immiscible polymers. The diffusion of the water molecules is controlled by the continuous phase. To compatibilize the two homopolymers, a 94/6 copolymer of PP and of polyacrylic acid was added, at various levels, to a 60/40 mixture of PET and PP: This did not affect markedly the elastic modulus. The yield stress increased, however, indicating that we had a better adhesion and that the copolymer seems to have a certain emulsifier effect, increasing the quality of the dispersion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.