Abstract

Porous bioactive titanium implants (porosity of 40%) were produced by a plasma-spray method and subsequent chemical and thermal treatments of immersion in a 5 M aqueous NaOH solution at 60 °C for 24 h, immersion in distilled water at 40 °C for 48 h, and heating to 600 °C for 1 h. Compression strength and bending strength were 280 MPa (0.2% offset yield strength 85.2 MPa) and 101 MPa, respectively. For in vivo analysis, bioactive and nontreated porous titanium cylinders were implanted into 6 mm diameter holes in rabbit femoral condyles. The percentage of bone–implant contact (affinity index) of the bioactive implants (BGs) was significantly larger than for the nontreated implants (CGs) at all postimplantation times (13.5 versus 10.5, 16.7 versus 12.7, 17.7 versus 10.2, 19.1 versus 7.8 at 2, 4, 8 and 16 weeks, respectively). The percentage of bone area ingrowth showed a significant increase with the BGs, whereas with the CGs it appeared to decrease after 4 weeks (10.7 versus 9.9, 12.3 versus 13.1, 15.2 versus 9.8, 20.6 versus 8.7 at 2, 4, 8 and 16 weeks, respectively). These results suggest that porous bioactive titanium has sufficient mechanical properties and biocompatibility for clinical use under load-bearing conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.