Abstract

Titanium dioxide (TiO2) nanoparticles were pretreated with excessive toluene-2,4-diisocyanate (TDI) to synthesize TDI-functionalized TiO2 (TiO2-NCO), and then polymeric nanocomposites consisting of polyamide 6 (PA6) and functionalized-TiO2 nanoparticles were prepared via a melt compounding method. The interfacial interaction between TiO2 nanoparticles and polymeric matrix has been greatly improved due to the isocyanate (NCO) groups at the surface of the functionalized-TiO2 nanoparticles reacted with amino groups (NH2) or carboxyl (COOH) groups of PA6 during the melt compounding and resulted in higher tensile and impact strength than that of pure PA6. The nonisothermal crystallization kinetics of PA6/functionalized TiO2 nanocomposites was investigated by differential scanning calorimetry (DSC). The nonisothermal crystallization DSC data were analyzed by the modified-Avrami (Jeziorny) methods. The results showed that the functionalized-TiO2 nanoparticles in the PA6 matrix acted as effective nucleation agents. The crystallization rate of the nanocomposites obtained was faster than that of the pure PA6. Thus, the presence of functionalized-TiO2 nanoparticles influenced the mechanism of nucleation and accelerated the growth of PA6 crystallites. POLYM. COMPOS., 35:294–300, 2014. © 2013 Society of Plastics Engineers

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.