Abstract
The mechanical properties and crystal morphological structures of short glass fiber (SGF) reinforced dynamically photo-irradiated polypropylene (PP)/ethylene–propylene–diene terpolymer (EPDM) composites were studied by mechanical tests, wide-angle X-ray diffraction (WAXD), optical microscopy, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and thermogravimetric analyzer (TGA). The mechanical properties of PP/EPDM composites, especially the tensile strength were greatly strengthened by dynamically photo-irradiation and the incorporation of SGF. The results from the WAXD, SEM, DSC, and TGA measurements reveal: (i) the formation of β-type crystal of PP in the PP/EPDM/SGF composite; (ii) the fiber length in dynamically photo-irradiated PP/EPDM/SGF composites are general longer than that in corresponding unirradiated samples. The size of EPDM phase in the photo-irradiated composites reduces obviously whereas the droplet number increases; (iii) photo-irradiation improves the interface adhesion between SGF and polymer matrix; (iv) the melting and crystallization temperatures of the photo-irradiated composites are not affected greatly by increasing the SGF content; (v) the thermal analysis results show that the incorporation of SGF into PP/EPDM plays an important role for increasing its thermal stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.