Abstract

The red clay is widely distributed in Guizhou province, which is characterized by high natural moisture content, difficult compaction and serious shrinkage and crackingin, and phosphogypsum is discharged for 5 million tons every year in Guizhou province. For the sake of effectively reducing the accumulation of phosphogypsum, mixtures were prepared with cement as a curing agent and mass ratios of cement to phosphogypsum of 1:1, 1:2 and 1:3 (low content phosphogypsum group) and phosphogypsum to red clay of 1:1, 1:2 and 1:3 (high content phosphogypsum group). Unconfined compressive strength, expansion, shrinkage and dynamic characteristic tests were conducted to analyze the behavior and mechanical properties of the mixtures. The modification mechanism of the mixtures by phosphogypsum was further explored by XRD (X-ray diffraction) and SEM (scanning electron microscopy). which provided a theoretical basis for the application of phosphogypsum in highway engineering and improved the engineering properties of red clay. The results show that the unconfined compressive strength of the phosphogypsum stabilized soil in the low content phosphogypsum group is greater than that in the high content phosphogypsum group. When cement:phosphogypsum = 1:2.2–1:3, the unconfined compressive strength of the mixture is maximum. When cement:phosphogypsum = 1:3, the maximum dynamic shear modulus of phosphogypsum stabilized soil is the largest. The absolute expansion rate and linear shrinkage rate of phosphogypsum stabilized soil in the low content phosphogypsum group are greater than those in the high content phosphogypsum group. When cement: phosphogypsum = 1:1–1:3, the absolute expansion rate is 6.5–12.3%, and the linear shrinkage rate is 1.3–2%. When red clay:Phosphogypsum = 1:1–1:3, the absolute expansion rate is 0.2–4%, and the linear shrinkage rate is 1–1.5%. The more phosphogypsum content, the smaller the expansion deformation and shrinkage deformation of the mixture. It is suggested that mass ratios of phosphogypsum to red clay is 1:1, and the cement content is 5%. Which can not only make full use of phosphogypsum solid waste, but also improve the engineering properties of red clay.Article Highlights The unconfined compressive strength of the phosphogypsum stabilized soil in the low content phosphogypsum group is greater than that in the high content phosphogypsum group. The absolute expansion rate and linear shrinkage rate of phosphogypsum stabilized soil in the low content phosphogypsum group are greater than those in the high content phosphogypsum group. The strength of phosphogypsum stabilized soil is derived from the comprehensive effect of cement and phosphogypsum. Due to the increment of the phosphogypsum and the decline of proportion of red clay, leading to the decrease in the content of hydrophilic minerals, the expansion deformation and shrinkage deformation characteristics are changed. Considering strength and deformation characteristics, it is recommended that mixtures with 5% cement content, and phosphogypsum to red clay of 1:1 as subgrade filler, which can not only make full use of phosphogypsum solid waste, but also improve the engineering properties of red clay.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call