Abstract

Synthetic multilayers consisting of periodic layers of the refractory metal Mo and the oxide ceramic Al2O3 have been produced by alternating d.c. and r.f. reactive sputter deposition. Microlaminates with four different modulation wavelength—5, 20, 30, and 100 nm—were investigated in this study. The compositions, periodicities, and microstructures of the microlaminates were characterized by Auger electron spectroscopy, low-angle x-ray diffraction, and transmission electron microscopy, including high resolution lattice imaging and microdiffraction. Transmission electron microscopy from the microlaminates indicated that the as-deposited Mo layers are polycrystalline, while the as-deposited Al2O3 layers are primarily amorphous. The Mo and Al2O3 layers are thermally compatible at 800 °C for 6 h, showing no evidence of atomic interdiffusion between the layers. The mechanical properties of the microlaminates, as well as those of monolithic films of Mo and Al2O3 (i.e., the baseline materials), were investigated using nanoindentation methods. A higher than expected modulus and hardness were observed for the microlaminate with the longest wavelength (100 nm); otherwise the mechanical properties are explainable by a rule-of-mixtures. The enhanced mechanical properties of the 100 nm microlaminate may be attributed to crystallization of the amorphous Al2O3 layers and the evolution of a structural texture within this phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.