Abstract

Many automobile components are made from aluminium and its alloys because of their suitable properties. Metals and their alloys are usually subjected to heat treatment in order to improve their properties. Thus, the effect of precipitation hardening on the mechanical properties and microstructure of sand cast aluminum alloys was investigated. The cast AlCu-Zn alloy samples were heat-treated at 460 °C for 2 hours, quenched in water and then age-hardened at 160 °C for 5 hours. Tensile, impact and hardness tests were carried out on the heat-treated and the as-cast Al-Cu-Zn alloys samples. The surface morphology of both the as-cast and the precipitation hardened samples was observed using digital metallurgical microscope. The ultimate tensile strength of the precipitation hardened samples A2 (81.2Al: 1.56Cu: 8.33Zn) and B2 (81.7Al: 3.25Cu: 6.16Zn) are 173.42 N/mm 2 and 168.02 N/mm 2 , respectively. These values are higher than those of the as-cast samples A1 and B1, which are 168.02 N/mm 2 and 157.84 N/mm 2 , respectively. The precipitation hardened Al alloy samples also displayed higher hardness, impact energy and elongation than the as-cast samples, indicating improved properties. The presence of coarse reinforcing intermetallic phases was observed in the as-cast samples as compared to the well-distributed fine grain size microstructure of intermetallic phases in the precipitation hardened samples. It can be concluded that precipitation hardening improves the mechanical and microstructure properties of aluminum alloys and thus will find wider applications in automobile industries for the production of components and parts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.