Abstract

In this work, two type graphene were dispersed in aqueous solution via sonication, and graphene nanoplatelets (GP) and graphene oxide (GO) were characterized by means of ultraviolet visible spectroscopy (UV-vis), X-ray diffraction (XRD) and transmission electron microscopy (TEM). In addition, the effects of different graphene (GP and GO) on mechanical properties and microstructure of cement-based materials were investigated via filed emission scanning electron microscopy (FESEM). The results suggested that the incorporation of GP and GO both improved the flexural and compressive strength of cement, and the GP had a more prominent impact on the strengths of cement, compared with GO. The flexural and compressive strength of cement increased up to 23.5% and 7.5% with 0.05 wt% GP, respectively. FESEM analysis indicated that the microstructure of GP-cement paste was similar to that of control sample without graphene, whereas, a few flower-like crystals were generated in GO-cement paste. This work could provide a new understanding for further researches of graphene-cement composites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call