Abstract
Austenitic manganese steel has a high toughness, high ductility, high strain hardening capacity and excellent wear resistance, the material is mostly used in the mining industry for crushing and loading equipment. High manganese steel shows superior wear resistance when used under primary crushing system than when used under secondary and tertiary modes of crushing. This work presents the effect of vanadium content on the mechanical properties and microstructure evaluation of high manganese steel. The addition of vanadium to high manganese steels has a direct increase on the hardness and wear resistance. Impact testing for alloys containing vanadium showed low impact energies compared to the standard manganese steel. The increase in hardness and the wear resistance of the alloys was explained based on the vanadium carbide which had formed on the austenitic matrix. It was observed that the carbon and vanadium content will influence the mechanical properties of high manganese steel alloyed with vanadium. Microstructural examination showed that the size and distribution of vanadium carbidesinfluences the mechanical properties and the wear behaviour. Therefore, this work showsthat the addition of vanadium to high manganese steel will increase the hardness and wear resistance while decreasing the impact energy of high manganese steel alloyed with vanadium.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.