Abstract

In the present study, the influence of six different process parameters and three interactions on joint tensile strength, toughness, fusion zone microhardness variation are studied during dissimilar tungsten inert gas welding between austenitic stainless steel AISI 316 and alloy steel AISI 4340. Detailed experimental study using fractional factorial experimental design and subsequent statistical analysis show that higher tensile strength, toughness can be achieved using ER 309 filler material and suitably selecting the other process parameters and heating conditions. Addition of small proportion of hydrogen in shielding gas increases the heat transfer efficiency, melting and subsequent penetration. Preheating of AISI 4340 material reduces the chance of solidification cracking and post-heating helps to improve the joint mechanical property. Microstructural observations show that improper selection of process parameters may lead to micro-pores and degrade the joint quality. Successful joining of the dissimilar materials greatly depends on the selection of optimum process parameters, filler material and shielding gas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.