Abstract
Fiber-reinforced composites (FRC) could be feasible materials for fracture fixation devices if the mechanical properties of the composites are congruent with the local structural properties of bone. In a recently developed FRC implant, bisphenol A dimethacrylate (BisGMA) and triethylene glycol dimethacrylate (TEGDMA) resin was reinforced with unidirectional E-glass fibers. The addition of a braided glass fiber sleeving to the unidirectional fibers increased the torsional strength (99.5MPa) of the FRC implants at the expense of the flexural strength (602.0MPa). The flexural modulus was 15.3GPa. Two types of FRC intramedullary nails were prepared; first type was FRC as such, second type was FRC with a surface layer of bioactive glass (BG) granules. Experimental oblong subtrochanteric defect was created in 14 rabbits. The defect, which reduced the torsional strength of the bones by 66%, was fixed with an FRC intramedullary nail of either type. The contralateral intact femur served as the control. This model simulated surgical stabilization of bone metastasis. After 12 weeks of follow-up, the femurs were harvested and analyzed by torsional testing, micro-CT and hard tissue histology. Healed undisplaced peri-implant fractures were noticed in half of the animals irrespective of the type of FRC implant. Torsional testing showed no significant differences between the implantation groups. The torsional strength of the bones stabilized by either type of FRC implant was 83% of that of the contralateral femurs. In histological analysis, no implant debris and no adverse tissue reactions were observed. While the mechanical properties of the modified FRCs were suboptimal, the FRC intramedullary nails supported the femurs without structural failure, even in the cases of peri-implant fractures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Mechanical Behavior of Biomedical Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.