Abstract
Abstract Armor 500T steel used in armored military vehicles and marine vehicles were joined by CO2 laser beam welding method by applying three welding powers and two welding speeds under shielding argon atmosphere. From microstructure and microhardness results, under low laser welding power and high welding traveling speeds, microstructural transformation in the joining region of the performed welds occurred at a narrower distance as compared to other parameters, and it was determined that four regions formed independent of each other for each parameter group. Furthermore, it was determined that there is a gradual decrease in the microharness values of samples in which welding parameters cause heat input to decrease. The fatigue test results of all samples showed high strength properties in the parameters with high heat input. Additionally, tensile test results for all samples with high heat input parameters also exhibited high strength properties. Fracture at the intersection at high heat input parameters of a relatively ductile separation type occurred in HAZ whereas, at other parameters fracture occurred at the weld center and wide gap semi-brittle fracture behavior was observed. As a consequence, it was found that the most effective parameter as compared with laser welding power is laser welding traveling speed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.