Abstract

The deep fissured rock mass is affected by coupled effects of initial ground stress and external dynamic disturbance. In order to study the effect of internal flaw on pre-stressed rock mechanical responses and failure behavior under impact loading, intact granite specimens and specimens with different flaw inclinations are tested by a modified split Hopkinson pressure bar (SHPB) and digital image correlation (DIC) method. The results show that peak strain and dynamic strength of intact specimens and specimens with different flaw angles (α) decrease with the increase of axial static pressure. The 90° flaw has weak reduction effect on peak strain, dynamic strength and combined strength, while 45° and 0° flaws have remarkable reduction effect. Specimens with 90° flaw are suffered combined shear and tensile failure under middle and low axial static pre-stresses, and suffered shear failure under high axial static pre-stresses. Specimens with 45° and 0° flaws are suffered oblique shear failure caused by pre-existing flaw under different axial static pre-stresses. Besides, based on digital image correlation method, it is found that micro-cracks before formation of macro fractures (include shear and tensile fractures) belong to tensile cracks. Tensile and shear strain localizations at pre-existing flaw tip for specimen with 45° and 0° flaws are produced much earlier than that at other positions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call