Abstract

The lightweight design and load-bearing capacity of underwater vehicles remain perennial focal points. Ceramic lattice structures (CLSs) offer significant weight reduction while maximizing structural strength; however, their inherent brittleness poses a limitation. To optimize the performance of CLSs for underwater vehicle applications, a biomimetic Al2O3/phenol-formaldehyde (PF) resin composite structure (APCS) was proposed and fabricated by infiltrating additive-manufactured Al2O3 lattice structures (ALSs) with PF. Comprehensive assessments of the quasi-static mechanical properties were conducted using both experimental and simulation methods. The specific compressive strength and specific energy absorption of the APCSs under quasi-static compressive loading exhibited remarkable improvements, with the maximum values achieved from the body-centered cubic (BCC)/PF structure increasing by ∼15.23 and ∼307.93 times, respectively. In contrast to ALSs, the failure process of APCSs was gradual, with the confining pressure introduced by the PF promoting transverse crack propagation and layer-by-layer failure, thereby strengthening the ceramic lattice. Toughing mechanisms (i.e., crack arrest, crack deflection, and branching) were also observed in the APCSs. Furthermore, the simulation results aligned well with the experimental results, providing an in-depth analysis of internal damage and crack propagation. The improvements introduced by the composite structure in this study provide a reliable approach for obtaining lightweight and strong materials, thereby accelerating the application of ceramic-based materials in underwater vehicles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.