Abstract

Calcareous sand deposits are widespread along the shoreline in tropical and subtropical regions. Microbially induced calcite precipitation (MICP) treatment is a new method for improving the soil’s stiffness and strength. The small-strain shear modulus and damping ratio of MICP-treated calcareous sand, two critical parameters for predicting the dynamic behavior of soil, are little known. This study conducts a series of resonant column tests to investigate the dynamic characteristics of MICP-treated calcareous sand, emphasizing the influence of treatment duration and confining stress on the stiffness and damping characteristics. It analyzes the relationship between the initial dynamic shear modulus and unconfined compressive strength. In addition, empirical relationships between the reference shear strain and treatment duration or confining stress are provided. The results show that the normalized shear modulus G/G0 of MICP-cemented calcareous sand has a higher strain sensitivity than that of untreated sand, and the Hardin–Drnevich model can describe its attenuation pattern. The effective confining stress σc affects the degradation characteristics of the dynamic shear modulus of MICP-treated calcareous sand with a low cementation level; however, its impact decreases as the treatment duration increases. There is a linear relationship between the reference shear strain and confining stress. While the relationship between the reference shear stain and treatment duration is a power law.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call