Abstract
The first-principles calculations are performed to investigate the mechanical properties and electronic structure of TiC, Ti0.75W0.25C, Ti0.75W0.25C0.75N0.25, TiC0.75N0.25 and TiN. Density functional theory and ultrasoft pseudopotentials are used in this study. From the formation energy, it is found that nitrogen can increase the stability of TiC. The calculated elastic constants and elastic moduli of TiC compare favorably with other theoretical and experimental values. Tungsten and nitrogen are observed to significantly increase the bulk, shear and Young's modulus of TiC. Through the analysis of B/G and Cauchy pressure, tungsten can significantly improve the ductility of TiC. The electronic structure of TiC, TiN, Ti0.75W0.25C, Ti0.75W0.25C0.75N0.25, and TiC0.75N0.25 are used to describe nonmetal–metal and metal–metal bonds. Based on the Mulliken overlap population analysis, the hardness values of TiC, Ti0.75W0.25C, Ti0.75W0.25C0.75N0.25, TiC0.75N0.25 and TiN are estimated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.