Abstract

The effects of strain rate on mechanical properties, microstructural evolution and underlying deformation mechanisms of two kinds of interstitial CrMnFeCoNi high entropy alloys (HEAs), (CrMnFeCoNi)99.5C0.5 and (CrMnFeCoNi)99.0C1.0, are investigated under quasi-static and dynamic tension. Dynamic loading is carried out via a split Hopkinson tension bar system. The pre- and post-deformation microstructures are characterized with electron back scatter diffraction and transmission electron microscopy. Both yield strength and work hardening increase remarkably with increasing strain rate. Plastic deformation in both alloys under quasi-static and dynamic loading are dominated by dislocations, stacking faults, kink bands and deformation twins. Twinning is activated easier under dynamic loading, and twin density decreases with increasing carbon content due to the increased stacking fault energy. The Khan-Liu constitutive model can describe the experimental results for these two interstitial HEAs in a wide strain range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.