Abstract

In order to analyze the early mechanical properties and damage characteristics of phosphogypsum-based cemented backfill (PCB) under hydrochemical action, hydrochemical erosion and uniaxial compression strength (UCS) tests were carried out with HCl solution, NaOH solution, and water respectively. The damage degree is defined by taking the effective bearing area of the soluble cements of PCB under hydrochemistry action as the chemical damage variable, and the modified damage parameter α, which reflects the damage development characteristics, is introduced to construct the damage constitutive model of PCB considering chemical damage and load damage, and the theoretical model is verified with the experimental results. The results show that the damage constitutive model curves of PCB under different hydrochemical action are in good agreement with the experimental results, which verifies the correctness of the theoretical model. When the modified damage parameter α decreases from 1.0 to 0.8, the residual load-bearing capacity of PCB gradually increases, with the damage values of PCB samples in HCl solution and water gradually increasing before the peak and decreasing after the peak, while the damage values of PCB samples in NaOH solution show an overall increasing trend before and after the peak. The slope of the post peak curve of PCB decreases with increasing model parameter n. The results of the study can provide theoretical support and practical guidance for the strength design, long-term erosion deformation, and prediction of PCB in hydrochemical environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.